Quantcast
Channel: tronixstuff » microcontrollers
Viewing all articles
Browse latest Browse all 61

Tutorial: Arduino timing methods with millis()

$
0
0

This is chapter thirty-seven of a series originally titled “Getting Started/Moving Forward with Arduino!” by John Boxall – in what feels like an endless series of articles on the Arduino universe. The first chapter is here, the complete series is detailed here. Any files from tutorials will be found here.

[Updated 20/01/2013]

In this article we introduce the millis(); function and put it to use to create various timing examples.

Millis? Nothing to do with lip-syncers… hopefully you recognised milli as being the numerical prefix for one-thousandths; that is multiplying a unit of measure by 0.001 (or ten to the power of negative 3). Interestingly our Arduino systems will count the number of milliseconds (thousands of a second) from the start of a sketch running until the count reaches the maximum number capable of being stored in the variable type unsigned long (a 32-bit [four byte] integer – that ranges from zero to (2^32)-1.

(2^32)-1, or 4294967295 milliseconds converts to 49.71027-odd days. The counter resets when the Arduino is reset, it reaches the maximum value or a new sketch is uploaded. To get the value of the counter at a particular juncture, just call the function – for example:

Where start is an unsigned long variable. Here is a very simple example to show you millis() in action:

The sketch stores the current millis count in start, then waits one second, then stores the value of millis again in finished. Finally it calculates the elapsed time of the delay.  In the following screen dump of the serial monitor, you can see that the duration was not always exactly 1000 milliseconds:

To put it simply, the millis function makes use of an internal counter within the ATmega microcontroller at the heart of your Arduino. This counter increments every clock cycle – which happens (in standard Arduino and compatibles) at a clock speed of 16 Mhz. This speed is controlled by the crystal on the Arduino board (the silver thing with T16.000 stamped on it):

Crystal accuracy can vary depending on external temperature, and the tolerance of the crystal itself. This in turn will affect the accuracy of your millis result. Anecdotal experience has reported the drift in timing accuracy can be around three or four seconds per twenty-four hour period. If you are using a board or your own version that is using a ceramic resonator instead of a crystal, note that they are not as accurate and will introduce the possibility of higher drift levels. If you need a much higher level of timing accuracy, consider specific timer ICs such as the Maxim DS3232.

Now we can make use of the millis  for various timing functions. As demonstrated in the previous example sketch, we can calculate elapsed time. To take this idea forward, let’s make a simple stopwatch. Doing so can be as simple or as complex as necessary, but for this case we will veer towards simple. On the hardware perspective, we will have two buttons – Start and Stop - with the 10k ohm pull-down resistors connected to digital pins 2 and 3 respectively.

When the user presses start the sketch will note the value for millis – then after stop is pressed, the sketch will again note the value for millis, calculate and display the elapsed time. The user can then press start to repeat the process, or stop for updated data. Here is the sketch:


Viewing all articles
Browse latest Browse all 61

Trending Articles